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Using ideas of Freud (J. Approx. Theory 19 (1977), 22-37) Mhaskar and SalT
(Trans. Amer. Math. Soc. 285 (1984), 203-234, and Nevai (J. Approx. Theory 44,
No.1 (1985)), we obtain bounds for Pn(X)-Pn_2(X) and related expressions, for all
x E IR, where Pn(x) is the orthonormal polynomial of degree n for the weight
exp( - xm

), m a positive even integer. © 1985 Academic Press. Inc.

1. STATEMENT OF RESULTS

Let w(x) = exp( - x m
), x E IR, where m is a fixed positive even integer. Let

{Pn } :~ 0 denote the corresponding system of orthonormal polynomials. Let
{ an }:~ 0 be the coefficients in the recurrence relation

xPn=an+ l Pn+l +anPn-l, n = 1, 2, 3....

In this note, we use estimates of Nevai from [11], two inequalities of
Freud from [4], and an identity of Mhaskar and Saff [9] to prove the
following result. Throughout, C, C J, C2,..., denote positive constants
independent of nand x.

THEOREM A.

(i) w(x)(Pn(x) - Pn ~ 2(X))2:s; Cn - 11m, X E IR.

(ii) w(x) p~(x)ll - (x/(2anWI :s; Cn -11m, X E IR.

(iii) Given e>O, there exists C=C(e) such that

w(x) p~(x) ~ C,

for all x E IR with 12an - Ix II ~ e.
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Remarks. (a) Results of Bonan [2] and Nevai [11] imply (I), (2), and
(3) for Ix I~ en 11m and certain choices of C. Nevai [10, p. 193] conjectured
that (3) is true for all x E IR.

(b) One may replace an in (2) by an+ko where k is any fixed integer.

(c) The proof uses, first, the identity (see Dombrowski and Fricke
[3] or see (6) in [11])

n-I

L (aLI-aZ)Pk(X)
k=O

= a~(Pn_ I (x) - xPn(x)/(2an))2 + a~(l- x2/(4a~)) p~(x)

= a~{ P~ _ I (x) - xPn(x) Pn- ((x)/an+p~(x)},

which, as in Nevai [11], yields

THEOREM B.

XE IR. (4)

Use is made of asymptotics for an due to Magnus [6], Lew and Quarles
[5], Mate and Nevai [7] and Mate, Nevai, and Zaslavsky [8]-see (7) in
Nevai [11]:

(5)

where

(6 )

Finally, we shall also need the following theorem of Mhaskar and Saff
[9, Theorem 2.7]:

THEOREM C. For all polynomials P of degree at most n,

where

and

Am = 21
-

mr(m + 1)/{F(m/2) r(m/2 + I)}.

(7)

(8)

The quantity it,; is denoted by an(a)=an(m) in Mhaskar and Saff[5].
Further, Am is given by (1.6) in [9].



88 D. S. LUBINSKY

2. PROOFS

The following lemma in a sense states that intervals of length o(n ~ 1 + 11m)
do not matter much for supremum norms of polynomials of degree ~ n.

LEMMA 1. Let {An} be a sequence of positive numbers such that

a~ - An = o(n ~ I + 11m), n --+ 00. (9)

Let {Qn} be a sequence of polynomials such that Qn has degree at most n.
Let

Bn= II Qnwk,Jlhlj' n = 1, 2, ... , (10)

and

bn= II Qn w II LxcE ~ An,An], n= 1, 2, .... (11 )

Then

lim Bn/bn= 1. (12 )
n-. 00

Proof For those n for which An ~ a~, Theorem C ensures that Bn= bn­
Hence we may assume An < ~, n = 1,2, 3.... Let An < X ~ a~. There exists
UE (An, X) such that

(Qn wHx) = (Qn W HAn) + (X - AnHQn w)' (u)

= (Qn wHA n)+ (X - AnHQ~(u) w(u) - mum - IQn(u) w(u)). (13)

We note that, by Theorem 1.1 in Freud [4, p. 23],

IQ~(u) w(u)1 ~ Clnl-I/m II Qn W II Lx(Ihl)'

while Iu Im- I ~ (a~)m- I ~ C2 n 1
- 11m. Then (10), (11), and (13) yield for all

XE (An, a~],

IQn W I(x) ~ bn+ (a~ - An) Cn l ~ I/mBn' (14 )

Similarly, we may deal with XE [-a~, -An)' Further, (14) holds trivially
for XE [ -An' An]' Then Theorem C yields

or
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so that, by (9),

89

As Bn ';3 bn , (12) follows. I
We shall apply Lemma 1 with A 2n = 2an- To this end, we must establish

(9). Write m = 2/. By (5), (6), (7), and (8),

2an { n l/2r(m/2) 21-mr(m + 1) }llm -2
ain = r(m + 1)/2) 2r(m/2) r(m/2 + 1) + O(n )

{
nI/2(1_1)!2-2/(2/)! }llm -2

= (1-- 1/2)(/- 3/2)'" (1/2) n l/2 (1- 1)! l! + O(n )

= 1 + O(n- 2
),

so that

n ---+ 00. (15 )

Proof of Theorem A

We first establish the following statement: Let k be an integer. Then, for
all x E IR,

In fact, this follows from (4), provided we can show that for all x E IR,

First, note the rather weak inequality

XE IR, (18)

which follows from Lemma 2.5 in Freud [4, p. 25] or from inequality (8)
in Nevai [11]. Next, by (5),

n ---+ CJJ. (19)

From (5), (18), and (19), we see that the left member of (17) is bounded
for Ixi :::;2an by C1n- 1/m

• Applying Lemma 1 with A 2n =2an and Q2n(X) =
xPn(X)Pn_I(X), and noting that (15) implies (9) for positive even integers,
we see that (17), and hence (16), holds for all x E IR.

Proof of (i) of Theorem A. We apply (16) with k = 1. Let 0:::; x:::; 2an + I'

I[ Pn(x) Pn-I(X) < 0, (16) shows
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Cn - 11m ~ W(X)(p~(X) + P~ _ 1(X))

~ W(X)(Pn(X) - Pn-l(x)f/2.

On the other hand, if Pn(X)Pn_l(X»O, (16) shows

Cn - 11m ~ W(X)(p~(X) - 2Pn(x) Pn- 1(X) +p~ _ 1(X))

= W(X)(Pn(X) - Pn_I(X))2.

Hence for 0 ~ X ~ 2an + I'

(20)

By considering (20) for nand n -1, we obtain

(21)

0~x~2an. As (Pn(X)-Pn_2(X))2 is even, it follows that (21) holds for
Ixi ~2an· Applying Lemma 1 with Q2n=(Pn-Pn-2f and A 2n =2an, we
obtain that (21) holds for all x E R I

Proof of (ii) of Theorem A. Applying (16) with k= 1, we see that for
Ixi ~2an+I'

p~(X) - (x/an + I) Pn(x) Pn- I(X) +p~_ I(x)

= (Pn_I(X) - (x/(2an+I)) Pn(x))2 + (1 - (x/(2an+d)2) p~(x)

~ (1- (x/(2an+1))2) p~(x) ~ O.

Then, using (16) and Lemma 1 with Q2n+2=(1-(x/(2an+df)p~ and
A 2n +2= 2an+1> we obtain

w(x)11 - (x/(2an+ I) )21 p~(x) ~ Cn - 11m,

Using (18) and (19), we may easily prove

w(x)(x/2)2 p~(x)1 a~-11 - an- 21 ~ Cn -11m,

Then (22) and (23) yield (2). I

XE [It

X E [It

(22)

(23)

Proof of (iii) of Theorem A. For 12an-I x II ~ 6, we have

and then (2) yields (3). I
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XE IR,

Remarks. (a) For the Hermite weight (m = 2), a better inequality than
(1) appears in Askey and Wainger [1, p. 700].

(b) After stating Theorem 1 in [11], Nevai conjectures that in this
theorem 0 < c < 1 cannot be replaced by c = 1. If (2) in [11] holds with
c = 1, Theorem C shows that

w(x) p~(x):::; en -11m,

but this does not readily lead to a contradiction.

ACKNOWLEDGMENTS

The author would like to thank Paul Nevai for providing him with a copy of [11], and for
his encouragement to write this paper, as well as for pointing out an error in an earlier version
of this paper.

REFERENCES

1. R. ASKEY AND S. WAINGER, Mean convergence of expansions in Laguerre and Hermite
series, Amer. J. Math. 87 (1965), 695-708.

2. S. BONAN, Applications of G. Freud's theory I, in "Approximation Theory IV" (c. K.
Chui et. al., Eds.), pp. 347-351, Academic Press, New York, 1984.

3. J. M. DoMBROWSKI AND G. H. FRICKE, The absolute continuity of phase operators, Trans.
Amer. Math. Soc. 213 (1975), 363-372.

4. G. FREUD, On Markov-Bernstein type inequalities and their applications, J. Approx.
Theory 19 (1977), 22-37.

5. J. S. LEW AND D. A. QUARLES, Nonnegative solutions of a nonlinear recurrence, J.
Approx. Theory 38 (1983), 357-379.

6. A. MAGNUS, A proof of Freud's conjecture about the orthogonal polynomials related to
Ixl P exp( _x2m

) for integer m, manuscript.
7. A. MATE AND P. NEVAI, Asymptotics for solutions of smooth recurrence equations,

manuscript.
8. A. MArt, P. NEVAI, AND T. ZASLAVSKY, Asymptotic expansion of ratios of coefficients of

orthogonal polynomials with exponential weights, Trans. Amer. Math. Soc., in press.
9. H. N. MHASKAR AND E. B. SAFF, Extremal problems for polynomials with exponential

weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
10. P. NEVAI, Lagrange Interpolation at Zeros of Orthogonal Polynomials, in

"Approximation Theory II" (G. G. Lorentz et aI., Eds.), pp.163-201, Academic Press,
New York, 1976.

11. P. NEVAI, Exact bounds for orthogonal polynomials associated with exponential weights,
J. Approx. Theory, 44, No.1 (1985).


